Share →

These were the days my friend…..

This week we acknowledge a sea change and weather change in the land of Electric Vehicles. It will take some years yet to play out, but the helm has swung hard over and we are no longer destined to fall off the edge of the earth into that dreaded zone “where lie beasties”.

Over the past two years I have watched in some discomfort as my predictions that the early introductions of Nissan Leaf’s and Chevy VOlts and the parade of unobtainium “announcements” would lead to naught. Largely because it led to naught. These people designed the wrong car, for the wrong customers, and at the wrong time. The parade of bankruptcies and failures was painful to watch, and more painful to be the screwtape at the party predicting them. It was a painful process but one that had to be gone through – I suppose. Actually it was mostly unnecessary, which made it even more irritating.

In the past few months, things have changed and right smartly. I would have to say the lion’s share of the credit goes to Tesla Motor Company. The successful introduction of their Model S not only validated my position that upscale luxury cars aimed at early adopters was the way to go, it has completely turned around the tone and attitude of the other players. GM’s Akers is lashing at GM with a whip and deriding the GM crowd who in turn derided Tesla as a bunch of laptop batteries. He knows what disruptive technology and just EXACTLY what it does to HUGE vested interests if they don’t get with the game.

BMW this week has rolled out their BMW i3 with much confidence. VW has promoted the head of their electric projects to a mainline management position.

But it wasn’t all Tesla. A lot of it was YOU. I’ve been chanting this for years and nobody really believes it. The distance from me or you to anyone in the United States is about 3 hops. While the media moronically repeated the objections to the electric car over and over, the populace was not sold one way or the other. They DO actually distrust our mainline media now at a deep, universal, and resentful level. But at the same time, nobody wants to be the guinea pig, particularly if it is expensive.

I first picked up on this at THE GREAT RACE which Cape Girardeau hosted and we at EVTV sponsored. Yesterday we got a nice plaque about that and a photo. But Cape Girardeau was actually named BEST HOST CITY on this year’s race and a number of entrants noted, more like “best ever”. This from the work of Danny Essner.

In any event, the questions were all suddenly very different from the masses of the unwashed. In fact, instead of questions, I got a lot of “you know what I saw” one upmanship. And it was all about a car they had seen at a St. Louis car show that this guy did in his garage. Or a car at an Earth Day in California. Or a car in Las Vegas at another event. “And he said…” blah blah blah. “And it would go…” blah blah blah. And then “is that right???” Will they really do that?

And a surprising level of details sought on what type of motor, battery, controller, etc. The skepticism was gone. The crap about the great vaunted “sound of the V-8” was entirely missing from the conversation. The discussions of range were on how to get more of it, instead of what it was. Everything about the tone, nature, and specifics of our interaction with a huge number of people who attended the event was COMPLETELY DIFFERENT. And it’s not like we’ve not done this before. And Tesla rarely came up or was mentioned. I don’t think its considered a viable option for most of these people Or all of these people.

So I think it was a strong interaction. YOUR work building and showing your cars, and Tesla’s taking all the smug Tesla detractors with all their knowledgeable and sage criticisms, out back for a HUGE public spanking.
The stock is at $136 this morning, making my $140 call on it some months back look pretty damn good if I do say so myself.

So the body politic GETS the part about no gasoline. They always did. They just didn’t really think it could be real. We’ve been hampered by an ironic “too good to be true” effect. They want it so bad they are afraid to believe in it. And the media and vested interests, which they were skeptical of anyway, had TEsla literally make FOOLS of them in public.

So the table is set. And the rest of the me toos in automobile land have caught the change of wind and are tacking FURIOUSLY for position. By this time next month, we will be in the Oklahoma Land Grab phase with a huge rush to get into position by investors, venture capital, and of course all the carmakers.

In fact, each and ever one of the carmakers have carefully already laid the ground work to claim they were the “first” at some aspect of it. Porsche’s claim, by virtue of their founders failed exercises with electric wheel motors in 1904 has to take the cake. But you’ll see all cementing those claims. Carlos Ghosn will have “known all along” and Bob Lutz can be expected to make a dozen cameo appearances cigar akimbo and gravelly voice going in all directions. Ironically, sales of Leafs and Volts have very abruptly LUNGED upward on the halo effect of TESLA. Will wonders never cease?

Brian and I drove up Wednesday to pick up my $107,000 Tesla Model S. Paid for entirely and several times over actually by some fortuitous June $47 call optionss on their stock I picked up in the early days of February.
And I’ve been day trading in the base stock since selling those. I know a number of our viewers have applied for positions with Tesla and want to go to work for them. I think that would be a good move. As for myself, I want TESLA to go to work for ME and they are doing pretty well at it at the moment.

mytesla

I hope to do a detailed analysis of the car after EVCCON but just a quick take. After all that, it’s a car. It IS a cool car. It will fill every early adopters dream. They will be noticed. They will be considered once again out ahead of the crowd and cool. It will do 275 miles on a single charge. We drove it 148 miles from St. Louis service center to my garage. No hiccups. Not a peep. Quality throughout. EXCELLENT SALES EXECUTION. It is the EASIEST car to purchase you will every buy – as long as you have $107,000 not earmarked for anything important. The feel and driving experience are notable and absolutely quality.

The doors and seats are completely out of alignment for a normal car and it makes it terribly difficult to get in and out of. If you are going down the road at 70 mph, and roll the front windows UP and leave the back windows down, the entire car hits some resonance and vibrates and throbs so alarmingly I’m certain it would have shook the car to pieces if I had not gotten the rear windows up quickly. You should try it just to feel it but don’t do it much if you want to keep the car.

And in the end, it’s just a car. A nice four door sedan. That doesn’t use gasoline at all. It’s so perfect, it kind of leaves you underwhelmed. We’re accustomed to glitches and oddities in all our builds reminding us of the joy of driving electric. The Tesla doesn’t have any. You quickly forget you are driving an electric at all. It’s quiet but all modern four door sedans are quiet. It’s quick, but all modern four door luxury sedans are quick. And it’s a sedan.

I like it. I’m going to say I love it. But in reality, it is destined to be the wife’s daily driver. I do indeed prefer the Escalade in most respects, except the Escalade won’t play my iPhone music. And I”m sure I can rectify that easily enough with some add-on or another.

Oh and it turns out it will only hold THREE remote control signatures after all. No need for that. There is plenty of computer to hold a hundred. But they provide three slots as it turns out and that’s all you get. Most of the interior amenities are quite ordinary, though the instrument cluster and 17 inch screen are quite the tits.

I do remain fascinated with the EVSE charge station, and Tesla’s plug. Would somebody please locate the source of these so we can have our own version of this? It’s just too well done.

The future. It is a runout of the standard adoption curve and the usual chicken and egg gig but reflecting the fact that the automotive ecosystem is huge and complex, this too will be a little more complicated than usual. But not really harder as there are analogs already and it will be readily apparent how it all works out. I’ll lay it out for you and your immediate reaction will be that you knew that already. You didn’t. But it will flash through you so fast and so obvious that you will think you did.

Currently the focus is on batteries to improve the range of the vehicle. Despite everything I’ve said on this topic, and that this has been confirmed over and over. BMW has had 1000 participants and 12.5 million miles in their MiniE and ActiveE experiments. About 30 miles a day is what you need in a car. But a huge effort is going into batteries and vehicle range.

By the time they get all the cars up to 300 or 350 real miles, you wont’ need them. But by then, the batteries to do 100 miles will be relatively small and inexpensive. But along the way the fast charging infrastructure, which as I’ve said many times really isn’t that hard, will evolve to cater to the hoards of new e-car drivers. By the time the 300 mile car arrives, you’ll be able to charge almost anywhere in 15 minutes. And so the migration to the ultimate consumer and mass adoption will be in short range cars kind of like cell phones with prepaid minutes so popular among those too impoverished to even have a checking account, much less qualify for a phone contract. And they’ll still be useful because you can charge them anywhere.

Tesla’s SuperCharger network can lay this out pretty well. They are not moving as fast as I would like to see. It kind of belies a lack of confidence. If they would adopt the convenience store model, this would be essentially risk free and they could simply deploy it. It would be paying for itself before construction of the whole network was even complete.

Toyota, Honda, Nissan, and Mitsubishi announced this week, by way of example, a mutual project centered on a brazillian dollar subsidy from the Japanese government. The Japanese are simply the best on earth at cooperating. And they have government and these five huge car manufacturers all in bed and on the committee to put out 8000 normal charge stations and 4000 fast charge stations in the next two years. This is in a country roughly the size of California with a population of 130 million. It will be a PAY system with ALL of those chargers on one credit card.

It has become a national passion here that no two Americans would be caught dead agreeing on what time it was within a six foot radius of where they were standing. So none of that’s happening here of course. We will revel in the luxury of THREE competing standards, no cooperation, and a government marked by lack of leadership as its one most historically notable feature. A judiciary that legislates by decree. A Presidency that legislates by picking which laws to enforce, which ones to ignore, and which ones to just make up. And a legislature that doesn’t legislate at all because they can’t agree on anything. Huge corporations equally leaderless. And Elon Musk.

But it will all get sorted out. Imagine how much easier it would be if Tesla, General Motors, Ford, and Chrysler, and the U.S. government, each pitched in $200 million and demanded the utility companies as a group to pony up and equal $1.2 billion amount to form the GO WEE STOP Corporation to build solar electric fast charge stations across the land. As I’ve pointed out, we only need 1150 of them to blanket the country’s Interstate highway system with one every 50 miles.

So it’s early adopter upscale luxury car, better batteries, more range, lower priced cars, more infrastructure, less range, low priced cars. Kind of an odd winding map to mass adoption through batteries and infrastructure. Eventually the cost of the batteries will come down because their energy density will go up, not because you actually paid less per cell. You just won’t need 7000 cells anymore.

Enough about God, the Universe, and the meaning of life. Let’s talk about me. And maybe a little bit about you. The immediate remains the batteries. And proving once again that it is much preferable to be lucky than to be good, I ordered six 100AH LiFePo4 cells with 20C output and received instead 10 50Ah NMC cells with 20C output I didn’t even know were available.

NMC stands for Nickle Mangase Cobalt. The actual chemistry is LiNiMnCoO2 and the magic sauce is of course the ratio of Nickel to Manganese to Cobalt. Cobalt is heroically expensive, a rare earth element and quite toxic and thermally unstable with the highest energy and power density. Manganese is dirt cheap, a little bit more thermally stable, a little less on energy and power density, and unfortunately much shorter cycle life. Nickle has been with us since the Edison cell 100 years ago. It is of course a lithium ion battery.

Unlike the LiSO2 cells or lithium air cells out on the horizon, or the silicon anode cells also out of the horizon, the NMC uses the same equipment, the same process, the same graphite anode exactly, and so forth to any of the three extant lithium ion cells:

LiCoO2
LiMnO4
LiFePO4

There are actually TWO incrementally improved chemistries which I call kitchen sink cathodes as they have thrown everything but the kitchen sink into the mix and I’m not entirely clear the sink isn’t in there somewhere as part of someones secret sauce.

LiNiMnCoO2 and LiNiCoAlO2. The first is short named NMC and the second NCA. The NCA cell is most probably the new Panasonic cell in the Tesla Model S. The NMC cell is the one Nissan is rumored to be working furiously on for their 2015 Nissan Leaf.

Consider this:

LiFePo4 150-160/370
LiNiMnCoO2 200/370
LiNiCoAlO2 180/370

Let’s look at what these numbers represent. In the case of the LiFePO4 cells, the 150-160 is the number of milliamphours of energy can be intercalated or hosted per gram of cathode material. The reason tis one is stated as a range is that technically speaking LiFePO4 cannot conduct electricity. We need it to to work as a battery. And so we typically mix in about 5% graphite. The range varies. So do trace secret sauce elements like Yttrium and so forth.

The graphite anode, on the other hand, can produce 370 mAh/g. So how does that work? Well, assuming 160 for our cathode, we have about 370/160=2.31 times as much cathode material as anode material in order to make it work. So for 2.31 grams of cathode and 1 gram of anode, we get a 370mAh battery. So a 50Ah cell would require 135.13 grams of graphite and 312.16 grams of LiFePO4. That’s a little over 447 grams of active material total in the cell. Less than half a kilogram in about a two kilogram cell. The rest of the cell is aluminum foil, copper foil, plastic case, and terminal hardware.

In the case of LiNiMnCoO2, our cathode material can host 200 mAh/g. And so for a 50Ah cell, we need 135 grams of graphite again, but only 250 grams of LiNiMnCoO2 for a total of 385 grams of active material. So we are 65 grams lighter – at least.

And the at least should be in quotes. You see the actual POWER out of a cell is a function of two things – Voltage and Current. And that goes to the electropotential of the anode and cathode. Our LiFePO4 cells from fully charged to fully discharged will average about 3.2volts and so we could say that the 50Ah cell contained 3.2v x 50Ah = 160 Watt Hours or Wh. The electropotentials of the NMC cell render an AVERAGE voltage of more like 3.6v. So 3.6v X 50Ah = 180 Wh. So in addition to being 14.5% lighter in active material, we are also 12.5% higher in stored energy.

Pretty good work if you can get it.

newcellchargeVolts

The graph above shows the charge curve of the NMC cell to 4.2volts. The graph below shows the charge curve for a CA180FI cell. You will notice a dramatic difference that is going to change how we deal with cells at a very basic level. The CA series is mostly flat, with a sudden upturn to nearly vertical voltage climb at the end of charge. The NMC cell is essentially linear from bottom to top.

CAchargecurve

This also carries over to the discharge side. But on the very END of discharge we DO have the vertical slope. If you fully charge the NMC cell, and let it sit overnight, it will settle to just about 4.00v. When you discharge it, it immediately drops to 3.9, but from there it is pretty linear down to 3.3v. At that point it turns south quickly. But the average from 3.9 to 3.3 is clearly 3.6v.

LiNiMnCoO2dischargecurveVolts

It will undoubtedly cost us a cell, but I am going to find it. I think if we charge high enough on the other end, we will find the same vertical face. But we may be at a voltage beyond what the organic solvents and lithiumhexaflourphosphate electrolytes can stand before they start breaking down. The manufacturer recommends charging to 4.1v.

We did a quick test of fast charge. No change in the charge curve. 19 minutes we did 47.5 Ah for a 95% recharge at 3C. Anode temperature rose from 83F to 110F. Not a problem, but much higher than the LiFePo4 cells. You see the advantages you derive from the lower 3.2v average voltage is longer life and more thermal stability.

LiNiMnCoO2fastcharge Volts

Alibaba has always listed the LiFePO4 and LiMnO4 material available in drums. In recent weeks this LiNiMnCoO2 NMC material has appeared as well. I think Chinese battery manufacture will move away from LiFePo4 and towards the NMC chemistry in months to come.

And that pretty much comprises this year’s incremental advance in battery chemistry. These cells are rated at 15C continous discharge and 20C for up to 10 seconds. We’ll probably try to test that at some point to find what the voltage sag is for example during a 20C discharge. But I expect it will be quite good.

We are 35 days out from receiving a large block of these cells, which are a little hard to get at the moment. The bad news is they are nearly twice as expensive as our beloved CA series cells so I don’t expect them to take over immediately. The world is apparently getting smaller. The crucial patents on the secret sauce mix for NMC belongs to 3M and they have already licensed it to Chinese firms who appear willing to pay the price and be part of the adult world economy. Not necessarily good for you and I.

As I warned earlier, the cell price is not going down. But how many and how large the cells you need probably will. In effect, cheaper better batteries make better electric cars.

I’m excited.

Jack